Молния как источник энергии. Электростанция на молнии. место. Геотермальные станции

Грудное вскармливание 04.12.2019
Грудное вскармливание

Гроза - атмосферное явление, при котором в кучевых облаках, находящихся на высоте 7 -15 км, возникают многократные искровые электрические разряды - молнии, сопровождающиеся громом, ливнями, градом и усилением ветра. Согласно современным представлениям, электризация облаков происходит за счет трения кристалликов льда о смесь водяного пара и мельчайших водяных капелек. Разделение электрических зарядов и образование электрического поля происходит только при интенсивных вертикальных восходящих и нисходящих течениях.
Для более ясного проблемы использования энергии грозовых разрядов, кратко остановимся на основных современных взглядах на грозовые явления. В настоящее время не решен окончательно вопрос, за счет чего получают заряд капельки воды и кристаллики льда в грозовых облаках. Одна группа ученых считает, что капельки и кристаллы льда захватывают заряд из воздуха, другая группа считает, что они заряжаются за счет обмена зарядом при контакте между собой. В результате экспериментальных исследований установлено, что от нижней кромки грозового облака и до слоя с температурой 00C простирается водная часть облака. В области с температурой от 00C до 150C сосуществуют вода и лед, и при температуре ниже 150C облако обычно состоит только из ледяных кристаллов. Капельная часть облака, в основном, имеет отрицательный заряд, а ледяная его часть имеет положительный заряд. В средних широтах центр отрицательного заряда грозового облака располагается на высоте около 3 км, а центр положительного примерно на высоте 6 км. Напряженность электрического поля внутри грозового облака составляет 100-300 вольт/см, но перед разрядом молнии в отдельных небольших объемах она может доходить до 1 600 вольт/см. Грозовой процесс невозможен без разделения зарядов в облаке путем конвекции. Поле конвекции в облаках распадается на несколько ячеек (в некоторых грозах до 8). Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения. В отдельных случаях скорость восходящих потоков может достигать 30 м/сек, однако в основном она составляет 10-12 м/сек. Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью (разрядами молний) и выпадением осадков. Такая ячейка имеет горизонтальный диаметр 2-8 км и простирается в высоту до уровня с температурой 40C. В стадии затухания во всей конвективной ячейке преобладают слабые нисходящие течения с уменьшением электрической активности и колличества выпадающих в единицу времени осадков. Полный цикл жизни конвективной ячейки составляет около часа,
длительность стадии зрелости равна 15-30 минутам, стадии затухания около 30 минут.
Гроза, продолжающаяся несколько часов, является результатом деятельности нескольких конвективных ячеек.
Объем грозового облака, состоящего из смеси капель и ледяных кристаллов, достигает от сотен до нескольких тысяч кубических километров. Масса водно-ледяных частиц, при этом объеме, составляет примерно 106 - 107 тонн.
Потенциальная энергия грозового облака составляет от 1013 до 1014 Дж и достигает энергии термоядерной мегатонной бомбы. Молнии, обычно линейные, длиной несколько километров, диаметром десятки сантиметров, относятся к без электродным разрядам, так как зарождаются в скоплении заряженных частиц, преобразуя электрическую энергию в тепловую. По условиям развития грозы разделяются: на внутримассовые и на фронтальные. Внутримассовые грозы над материком возникают в результате местного прогревания воздуха от земной поверхности, что приводит к развитию в нём восходящих токов местной конвекции и к образованию мощных кучево-дождевых облаков. Поэтому внутримассовые грозы над сушей развиваются преимущественно в послеполуденные часы. Над морями наиболее благоприятные условия для развития конвекции наблюдаются в ночные часы, и максимум в суточном ходе приходится на 4 - 5 часов утра.
Фронтальные грозы возникают на фронтальных разделах, т. е. на границах между тёплыми и холодными воздушными массами и не имеют регулярного суточного хода. Над материками умеренного пояса они наиболее часты и интенсивны летом, в засушливых районах - весной и осенью. Зимние грозы возникают в исключительных случаях - при прохождении особенно резких холодных фронтов. Вообще зимняя гроза- явление очень редкое.
Грозы на Земле распределены весьма неравномерно: в Арктике они возникают раз в несколько лет, в умеренном поясе в каждом отдельном пункте бывает несколько десятков дней с грозами. Тропики и экваториальная область являются самыми грозообильными районами Земли, и получили название "пояс вечных гроз". В районе Бютензорга, на острове Ява, грозы буйствуют 322 дня в году. В пустыне Сахара гроз вообще почти не бывает. Электрическое строение типичного грозового облака биполярно - положительные и отрицательные заряды располагаются в верхней и нижней частях облака соответственно. Вблизи основания облака под отрицательным зарядом обычно располагается дополнительный
положительный заряд. В зависимости от условий (в частности, от широты местности) возможны различные значения верхнего положительного и нижнего отрицательного зарядов.
Электрическое поле в облаках обусловлено распределением объемных зарядов, создаваемых всеми носителями зарядов в данном облаке. В грозовых облаках происходит весьма быстрое накопление больших объемных зарядов. Средняя плотность объемного заряда может составлять порядка (0,3-3)10- Кл/м. Области с максимальной плотностью зарядов имеют размеры порядка нескольких сотен метров. В таких локальных объемах облака создаются условия, благоприятные для образования молний. По современным представлениям наиболее часто встречаются объемы с максимальной плотностью зарядов (зоны неоднородности) размером 200-400 м. Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает достаточной величины, начинается ударная ионизация воздуха. Свободные электроны, которые всегда имеющиеся в небольшом количестве в воздухе, под воздействием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха ионизируют их. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов, представляющие собой хорошо проводящие каналы, которые сливаясь, дают начало яркому термоионизированному каналу с высокой проводимостью - ступенчатому лидеру молнии. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров, со скоростью примерно 510 м/сек, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются, при движении лидера до поверхности земли. По мере продвижения лидера к земле напряжение на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. В заключительной стадии, по ионизированному лидером каналу следует главный разряд молнии. Главный разряд характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью
о
продвижения, вначале доходящей примерно до 10 м/сек, в конце уменьшающейся до значений 107 м/сек. Температура канала при главном разряде может превышать 25 000 0С. Длина канала 1-10 км, диаметр несколько сантиметров. После прохождения импульса тока, ионизация канала и его свечение ослабевают. На рисунке 2.20. показаны три стадии развития молнии. На этом рисунке: 1- грозовое облако; 2 - канал ступенчатого лидера; 3 - корона канала; 4 - импульсная корона на головке канала; 5 - главный разряд. Принципиально возможны следующие основные пути получения электроэнергии из грозовых разрядов.
Еще в 1928-1933 годы на горе Дженеросо в Швейцарии на высоте 80 м над земной поверхностью подвешивалась металлическая решетка. Во время гроз эта решетка собирала заряд, достаточный для поддержания в течение 0,01 сек электрической дуги длиной в 4,5 м, что соответствовало силе тока в несколько десятков тысяч ампер и разности потенциалов порядка 1 миллиона вольт. Вначале предполагалось получаемое на этой
установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной

Рис. 2.20. Три стадии развития молнии

изменчивости электрического состояния грозовых облаков и невозможности пока его регулировать. Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.
Известны опыты, когда в результате глубинных взрывов в море, поднимавших фонтаны воды на высоту около 70 метров под грозовым облаком, происходили разряды облаков в море. Также практически были проведены разряды грозовых облаков на поверхность земли (моря) с помощью проволоки, которая доставлялась к облаку ракетой. Обычно разряд происходил, когда ракета поднималась на высоту порядка 100 м. Этого оказывалось достаточным, чтобы разрядить на землю грозовое облако с высотой нижней границы около километра. Были также попытки использовать в целях создания канала для молнии пучок протонов, полученных на синхротроне, а также с помощью лазеров. Основными недостатками указанных методов являются ряд чисто технических трудностей. Имелись проекты рассеивания в облаках металлических или металлизированных пластинок и нитей, играющих роль проводников короткого замыкания и одновременно микроразрядников, на которых вследствие наличия в облаке собственного электрического поля создается падение потенциала, достаточное для коронного разряда. Опыты по засеву облаков кристаллизующими реагентами с целью изменения их электрического состояния показали, что при соответствующих условиях

можно вызвать интенсивную электризацию облака, и один из путей управления электрическим состоянием грозовых облаков связан с управлением процессом кристаллизации. Но результаты подобных
воздействий на возможность подучения разряда большой мощности, пока недостаточно определены.
Российские энергетики предложили способ использования энергии молний, заключающийся в улавливании зарядов молнии через молниеприемники, электрически соединенные с токоотводом, заземленные через средство отбора энергии молнии, и утилизации электрической
энергии молний на общей накопительной емкости, при этом дополнительно инициируют разряды молнии посредством, например, лазерных излучателей, создающих зоны безэлектродного электрического пробоя воздуха для возбуждения устойчиво развивающегося лидера электрического искрового разряда молнии, а отвод энергии осуществляют через токоотвод, выполненный из резонансных контуров LC-фильтров с диодными мостами.
Электрическая схема, предложенного устройства, показана на рисунке 3.20. На этом рисунке: 1- молниеприемники; 2 - токоотвод; 3- трехзвенные резонансные LC-фильтры; 4- общая накопительная емкость; 5- автоматический переключатель; 6 -обнуляющее сопротивление; 7 -отвод к потребителю. Каждый молниеприемник выполнен в виде подвешенной над землей металлической сетки, закрепленной на изоляторах. Токоотвод выполнен из более чем двух соединенных параллельно, последовательно связанных каскадов D, обеспечивающих понижение тока грозового разряда. Каждый каскад выполнен из трехзвенных резонансных LC-фильтров, соединенных между собой общей индуктивной связью. Общая индуктивная связь образована из последовательно соединенных трех обмоток дросселя, а на выходе каждого каскада подключен соответствующий мостовой выпрямитель. При этом выходы мостовых выпрямителей соединены между собой параллельно и подключены к общей накопительной емкости СН. «Плюсовые» выходы через выпрямительные диоды подключены к пластине общей накопительной емкости Сн. «Минусовые» выходы подключены к другой пластине накопительной емкости СН, выход с СН подключен к системе потребителя. На выходе общей накопительной емкости СН установлен автоматический переключатель для соединения с потребителем или
сопротивлением, обнуляющим накопленный заряд с общей накопительной емкости.
Так же предлогалось устройство, в котором в качестве молниеприемника используется вертикальная токопроводящая изолированная от земли труба, внутрь которой вниз дном вставлен толстостенный диэлектрический стакан так, чтобы верхняя часть трубы возвышалась над краями стакана. На внутреннюю поверхность стенок стакана нанесено заземленное токопроводящее покрытие. Труба- молниеприемник электрически соединена с одним концом первичной обмотки трансформатора, другой конец которой заземлен. Индуктивность первичной обмотки и емкость, сформированная токопроводящей трубой, стенками стакана и токопроводящим покрытием, образуют параллельный колебательный контур. Разряд молнии на трубу-молниеприемник инициируется протяженным оптическим пробоем, который формируется пучком импульсного инфракрасного лазера. Конфигурацию и направление греющего пучка формирует управляемое дихроичное зеркало,
расположенное внутри стакана. Это зеркало одновременно работает в составе системы оптического сканирования атмосферы, необходимой для выявления известным методом оптической локации зон с критическими градиентами напряжения в нижней части грозовых облаков. Энергия, снимаемая с вторичной обмотки трансформатора, используется для питания всех систем устройства, и часть ее может передаваться потребителям. Устройство для накопления электрической энергии. Устройство, которое позволяет накапливать электрическую энергию, выделяемую в молниеотводе при ударе в него молнии, а также извлекать ее избыток из атмосферы между разрядами молний, показано на рисунке 4.20. На этом рисунке: 1- металический громотовод; 2 - тороидальные катушки
индуктивности; 3 -согласующие элементы; 4- заземление. Как видно из приведенного рисунка, это запатентованное устройство, содержит вертикально установленный, заземленный громоотвод. Причем, громоотвод выполнен в виде металлического проводника, вблизи которого расположено одно или несколько элементов для съема электрической энергии.
Элемент для съема электрической энергии содержит катушку индуктивности,
полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура. В этом устройстве катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода.

Китайские ученые из института атмосферной физики разработали несколько иную технологию использования энергии молнии. Для захвата молнии будут использоваться оснащенные специальными громоотводами ракеты, которые будут запускать в центр грозового облака. Ракета "YL-1" должна стартовать за несколько минут до удара молнии. "Проверки показали, что точность запусков составляет 70%", - сообщили разработчики аппарата. Энергия молнии, а также производимое ей электромагнитное излучение будут использоваться для генной модификации сельскохозяйственных пород и производства полупроводников. Кроме того, новая технология позволит значительно снизить экономический ущерб от гроз.
Американская компания Alternative Energy Holdings (Alt-Holding), предложила еще один, способ использования даровой энергии. Специалисты компании утверждают, что им удалось разработать способ сбора и утилизации энергии, возникающей во время электрических разрядов в грозовых облаках. Проект получил название «Сборщик молний» (Lightning Harvester).
Начиная с 2006 года издание eVolo стало проводить ежегодный конкурс eVolo Skyscraper Competition, в котором принимают участие архитекторы, проектирующие непросто высотные здания, а небоскребы строящиеся по последним технологиям и с широким использованием самых современных материалов. Кроме того организаторы конкурса оценивают представленные проекты и с точки зрения их экологичности, которой уделяется особое внимание. Так, в нынешнем году на Evolo Skyscraper Competition 2011 призовые места заняли проекты «LO2P Recycling Skyscraper» (небоскреб-утилизатор в Индии), «Flat tower» (альтернативная энергетика) и гидротехническая плотина, совмещающая в себе электростанцию, галерею и аквариум. На этом же конкурсе группой архитекторов и инженеров из Сербии был представлен неординарный проект небоскреба производящего водород с помощью «небесного» электричества. Идея сербский команды оказалась настолько интересной, что проект Хидра был отмечен поощрительной премией, но вот занять одно из призовых мест. На самом деле, небоскреб Хидра представляетсобой проект высотного строения, которое будет ловить молнии из проходящих в районе грозовых фронтов. Далее предпологается использовать их энергию для процесса разделения (электролиза) обычной воды на составляющие - водород и кислород. Таким образом, это строение будет с одной стороны служить источником чистой энергии, а с другой, станет еще одним поставщиком кислорода в атмосферу Земли.
Учитывая непредсказуемость и непостоянство молний, авторы проекта предложили несколько решений, которые помогут повысить производительность «небоскреба» Хидра. Чтобы притягивать к себе как можно большее число грозовых разрядов, конструкцию необходимо установить в тех регионах планеты, где наблюдается наибольшее число молний. К таким областям относятся некоторые районы, находящиеся на территории США (штат Флорида), Венесуэлы, Колумбии, Индии (в северной части этих стран), Индонезии (полуостров Малакка) и Конго (Африка). В этих районах на каждый квадратный километр территории приходится от 50-70 и более ударов молний ежегодно. Кроме правильного выбора места под строительство, повысить вероятность удачной охоты за молниями поможет возведение проекта Хидра на открытой местности. Поэтому, если небоскреб будет располагаться в крупном городе, он должен стать самым высоким строением в мегаполисе. Иначе часть молний будет просто притягиваться соседними более высокими небоскребами или башнями. Как, например, это наблюдается с Эмпайр-стейт-билдинг (самое высокое здание Нью-Йорка) только в который каждый год ударяет около 20 молний.
Помимо сложности заранее предсказать, сколько же молний сможет улавливать сербский «небоскреб», у проекта существует и масса других трудноразрешимых проблем. Это и большие рабочие температуры (до 27 000 °C) и огромная сила тока (до 200000 А) разрядов молний, которые будут предъявлять высочайшие требования к используемым материалам, и также необходимость создания конденсаторов огромной емкостью и с еще невиданными характеристиками.
Однако прежде, чем атмосферное электричество попадет в промышленную сеть, оно должно быть преобразовано в промышленный стандарт: переменный ток частотой 50 - 60 герц с напряжением 220 - 550 вольт (для энергосетей разных стран эти параметры отличаются). То есть, не достаточно просто нгаправить разряд молнии на накопитель. В разное время предлагались разные решения этой проблемы, в том числе и подземные водяные резервуары. Под действием энергии электрического разряда, вода должна превращаться в пар, который, по мысли авторов патента (а такая схема запатентована в США в 60 годы прошлого века) должен вращать лопатки турбин, как на классических тепловых и атомных станциях. Но КПД таких генераторов крайне не велик. В настоящее время разработаны мощные электрические конденсаторы - накопители большой емкости, способные месяцами хранить накопленную энергию и преобразователи переменного тока на быстродействующих тиристорах, КПД которых приближается к 85%. Вторая проблема заключается в относительной непредсказуемости гроз и неравномерном их распределении. Конечно, наибольшая грозовая активность отмечается ближе к экватору, но возникающие в этих широтах разряды чаще всего происходят не между грозовым облаком и землей, а между облаками или частями облака. Конечно, в Центральной Африке есть обширная зона, где на квадратный километр приходится более 70 молний в год. Есть такие зоны и в США: в штатах Колорадо и Флорида. Но все-таки это достаточно локальные районы. Между тем, атмосферное электричество теоретически, доступно в любой точке планеты.
Специалисты, работающие с американским спутником «Миссия измерения тропических штормов» (Tropical Rainfall Measuring Mission - TRMM), опубликовали отчет об одном из своих недавних достижений. Проведя многолетние наблюдения, TRMM составил мировую карту частоты молний, в соответствии с числом ослепительных разрядов, возникающих над каждым квадратным километром данной местности за год. В центральной части Африканского континента есть зона, где на квадратный километр приходится более 70 молний в год. Именно там запланировано строительство «молниевого» завода. При этом разработчики считают, что электростанция « на молниях» окупится за 4-7 лет.
Следует отметить, что, несмотря на достаточно хорошо изученную природу образования и формирования грозовых разрядов, со временем появляется новые экспериментальные данные. Так, в 1989 году был обнаружен их новый вид - высотные электрические разряды, или спрайты. Эти разряды образуются в ионосфере и бьют сверху вниз, по направлению к грозовым облакам на расстояние 40-50 км, но исчезают, не достигая их. Еще более странные молнии наблюдали ученые из Тайваньского национального университета имени Чена Куна во время нескольких гроз над Южно - Китайским морем в 2002 году. Разряды атмосферного электричества били не вниз, а вверх - от грозовых облаков в верхние слои атмосферы. Разветвленные молнии имели гигантские размеры: светящиеся зигзаги длиной 80 км уходили ввысь на 95 км. Разряды продолжались менее секунды и сопровождались низкочастотным радиоизлучением.
Контрольные вопросы
Какое природное явление называется «гроза»?
За счет, какого явления происходит электризация облаков?
Каков процесс развития наземной молнии?
Какие, принципиально возможные методы, получения электроэнергии из грозовых разрядов?
Какие устройства, предлогалось использовать в качестве молниеприемника?
В каких районах нашей планеты наблюдается наибольшее число молний?
В каких странах мира начнается использование энергии молний?

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец "сборщика молний".


Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго.

Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер. Чтобы "питаться" молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Во время разряда вмолнии происходит довольно сложный процесс Сначала из облака к земле устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

Далее все эти стадии могут повториться и 2, и 3, и 10 раз - за те самые доли секунды, что длится молния. Представьте, насколько сложная задача - поймать этот разряд и направить ток в нужное место. Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями?

Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. При одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут. Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Грозы случаются на Земле очень неравномерно. Специалисты, работающие с американским спутником "Миссия измерения тропических штормов" опубликовали отчёт об одном из последних достижений этого спутника. Составлена мировая карта частоты молний. Например, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!

Пока с такими проектами использования энергии молний выступают в основном изобретатели из США. Американская компания Alternative Energy Holdings сообщает, что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час. В разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но возможный успех связан с более простыми системами.

Alternative Energy Holdings заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году. Компания намерена испытать свою установку в течение грозового сезона будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция "на молниях" окупится за 4-7 лет.

http://www.membrana.ru/




Знаете ли вы?

Глаз и фотоны

Чувствительность сетчатки глаза можно проверить самому, повторив простой опыт, поставленный в свое время известным советским ученым С. И. Вавиловым.

Между обыкновенной лампой накаливания и вашей точкой наблюдения установите стробоскоп - картонный диск диаметром 15-20 см, с вырезанным сектором градусов в 60, насаженный на ось. А теперь, вращая диск стробоскопа со скоростью примерно оборот в секунду, посмотрите на лампу одним глазом сквозь диск.

Вот что будет при этом происходить: вращаясь, диск станет отмерять для глаза пропорции света. Лампа светит неравномерно, то есть ее световой поток пульсирует, но, поскольку диск вращается относительно медленно, пропорции света будут отличаться друг от друга всего на несколько фотонов. И эту разницу, доступную лишь самым-самым точным приборам, без труда уловит ваш глаз - присмотревшись, вы увидите слабую пульсацию света! Легче провести этот эксперимент, если над «измерительной» лампой вы поставите еще одну - опорную. Ее свет поможет вам сосредоточиться.

Одной из первой компанией по использованию энергии из грозовых облаков стала американская компания Alternative Energy Holdings. Она предложила способ использования даровой энергии путем ее сбора и утилизации, возникающей из электрических разрядов грозовых облаков. Экспериментальная установка была запущена в 2007 году и называлась “сборщик молний”. Разработки и исследования грозовых явлений содержат огромные скопления энергии, которые американская компания предложила использовать в качестве источника электроэнергии.

Грозовая электростанция

Грозовая электростанция, по сути, представляет собой классическую электростанцию, которая преобразует энергию молний в электричество. На данный момент грозовая энергетика активно исследуется, и возможно в ближайшем будущем появятся в больших количествах грозовые электростанции наряду с другими электростанции на базе чистой энергии.

Молния как источник грозовых перенапряжений

Грозовые молнии представляют собой электрические разряды, накапливающиеся в больших количествах в облаках. За счет потоков воздуха в грозовых облаках происходит накопление и разделение положительных и отрицательных зарядов, хотя вопросы по данной теме до сих пор исследуются.

Одно из распространенных предположений образования электрических зарядов в облаках связано с тем, что данный физический процесс происходит в постоянном электрическом поле земли, которое обнаружил еще М. В. Ломоносов во время проведения опытов.

Рис. 3.1.

Наша планета всегда имеет отрицательный заряд, при этом напряженность электрического поля вблизи поверхности земли составляет около100 В/м. Она обусловлена зарядами земли и мало зависит от времени года и суток и почти одинакова для любой точки земной поверхности. Воздух, окружающий Землю, имеет свободные заряды, которые движутся по направлению электрического поля Земли. Каждый кубический сантиметр воздуха вблизи земной поверхности содержит около 600 пар положительно и отрицательно заряженных частиц. С удалением от земной поверхности плотность заряженных частиц в воздухе растет. У земли проводимость воздуха мала, но на расстоянии 80 км от земной поверхности она увеличивается в 3 млрд. раз и достигает проводимости пресной воды.

Таким образом, Землю с окружающей атмосферой по электрическим свойствам можно представить как шаровой конденсатор колоссальных размеров, обкладками которого являются Земля и проводящий слой воздуха, находящийся на расстоянии 80 км от поверхности Земли. Изолирующей прослойкой между этими обкладками служит мало-проводящий электричество слой воздуха толщиной 80 км. Между обкладками такого конденсатора напряжение составляет около 200 кВ, а ток, проходящий под воздействием этого напряжения, равняется 1,4 кА. Мощность конденсатора составляет около 300 МВт. В электрическом поле этого конденсатора в интервале от 1 до 8 км от поверхности Земли образуются грозовые облака и совершаются грозовые явления.

Молния, как носитель электрических зарядов, является наиболее близким к электричеству источником, по сравнению с другими АИЭ. Заряд, который накапливается в облаках, имеет потенциал в несколько миллионов вольт относительно поверхности Земли. Направление тока молнии может быть как от земли к облаку, при отрицательном заряде тучи (в 90% случаев), так и от облака к земле (в 10% случаев). Длительность разряда молнии составляет в среднем 0,2 с, редко до 1…1,5 с, длительность переднего фронта импульса - от 3 до 20 мкс, ток составляет несколько тысяч ампер, до 100 кА, температура в канале достигает 20000 ?С, появляется мощное магнитное поле и радиоволны. Молнии могут образовываться также при пылевых бурях, метелях, извержениях вулканов.

альтернативный энергия грозовой электростанция

Принцип действия грозовой электростанции

Основан на все том же процессе, что и другие электростанции: преобразование энергии источника в электричество. По сути, молния содержит то же электричество, то есть ничего преобразовывать не надо. Однако указанные выше параметры “стандартного” грозового разряда настолько велики, что если это электричество попадет в сеть, то все оборудование просто сгорит в считанные секунды. Поэтому в систему вводят мощные конденсаторы, трансформаторы и различного рода преобразователи, подстраивающие данную энергию под требуемые условия применения в электросетях и оборудовании.

Преимущества и недостатки грозовой электростанции

Преимущества грозовых электростанций:

Земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии -- солнца и радиоактивных элементов земной коры.

Грозовая электростанция не выбрасывает в окружающую среду никаких загрязнителей.

Оборудование грозовых станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом. Для этого понадобится телескоп или бинокль.

Грозовая электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки грозовых электростанций:

Грозовое электричество, как и энергию солнца или ветра, трудно запасать.

Высокое напряжение в системах грозовых электростанций может быть опасным для обслуживающего персонала.

Общее количество электроэнергии, которую можно получать из атмосферы, ограниченно.

В лучшем случае грозовая энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Таким образом, грозовая энергетика в настоящее время достаточно ненадежна и уязвима. Однако это не уменьшает ее значимости в пользу перехода на АИЭ. Некоторые районы планеты насыщены благоприятными условиями, что может значительно продолжить изучение грозовых явлений и получение из них необходимого электричества.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Альтернативные источники энергии. Грозовая электростанция

ВВЕДЕНИЕ

1.2 Проблемы развития энергетики

2.1 РАЗВИТИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

3.1 Грозовая электростанция

ВВЕДЕНИЕ

Многолетние исследования показали - запасы многих видов органических источников энергии не бесконечны. Они истощаются с каждым годом в больших количествах в соответствии с их потреблением. Эти выводы привели к появлению множества вопросов в поиске новых источников энергии. Тем временем все источники энергии разделились на две основные категории. Все запасы существующего топлива для выработки энергии разделились на два основных типа:

Возобновляемые;

Не возобновляемые.

В связи с этим поиск новых месторождений и новых видов топлива в настоящее время играет главенствующую роль в обеспечении энергией весь мир и отдельные жизненно важные объекты. Однако новые месторождения также истощаются, а альтернативные источники энергии такие, как энергия ветра и солнца эксплуатируются лишь при благоприятных условиях и требуют немалых затрат в оснащении и эксплуатации. Это связано с их более высокой нестабильностью и изменением показателей эффективности в процессе работы.

Огромное преимущество альтернативной энергии заключается в “чистоте” получаемой и производимой энергии. Ведь она добывается из природных источников: волн, приливов/отливов, толщи Земли. Все природные явления и процессы насыщены энергией. Задача человечества заключается в ее изъятии и превращении в электрическую. Вопрос в том, что случится с Землей, когда энергия будет качаться тераваттами пока не беспокоит умы. Так что, можно сказать, что задача ясна. Осталось развивать данные отрасли.

1. КЛАССИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ

Добыча ресурсов Земли подходит к завершению. Ведь практически все органические источники топлива воспроизводятся очень медленно или совсем нет. При этом человечество привыкло лишь брать, но не восполнять затраченные ресурсы. Поэтому вопрос энергетического истощения Земли не особо взволновал мир, кроме общественности и разных зеленых организаций, которые лишь грозят пальцем, если бросил бумажку на улице или не потушил костер. Поэтому к настоящему времени энергетические корпорации решают задачу лишь в поиске новых месторождений. Однако, как известно, новые разрабатываемые месторождения ничего не меняют, а точнее ухудшают экологическую обстановку еще больше.

Можно сказать, что поиски новых источников идут размеренным шагом: выращиваются энергетические элементы, добываются новые ресурсы для производства энергии. Ведь они также просуществуют относительно недолго.

Энергетика находится на первом месте в употреблении и преобразовании энергии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, истощение ресурсов планеты и экономику государств. Очевидно, что темпы потребления энергии в будущем не прекратятся и даже увеличатся. В результате этого возникают следующие вопросы:

Какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

Можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

Каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветре, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

Такой набор вопросов охватывает все сферы человеческой деятельности. Можно сказать, что в настоящее время задача экономико-экологического вопроса поставлена. Время действий.

1.1 Виды классических источников энергии

Все существующие виды энерготоплива в природе подразделяются на твердые, жидкие и газообразные. В отопительных приборах, для нагрева теплоносителя также применяется тепловое действие электрического тока. Некоторые группы топлива, в свою очередь, подразделяются на две подгруппы, из которых одна подгруппа представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; вторая подгруппа - топливо, которое получается путем переработки или обогащения естественного природного топлива; это называется искусственное топливо.

К твёрдому топливу относят:

а) естественное твёрдое топливо - дрова, каменный уголь, антрацит, торф;

б) искусственное твёрдое топливо - древесный уголь, кокс и пылевидное топливо, которое получается путём измельчения углей.

К жидкому топливу относят:

а) естественное жидкое топливо - нефть;

б) искусственное жидкое топливо - бензин, керосин, дизельное топливо (солярка) мазут, смола.

К газообразному топливу относят:

а) естественное газообразное топливо - природный газ;

б) искусственное газообразное топливо - генераторный газ, получаемый при газификации различных видов твердого топлива (торфа, дров, каменного угля и др.), коксовальный, доменный, светильный, попутный и другие газы.

Все виды органического природного топлива состоят из одних и тех же химических элементов. Разница между видами топлива состоит в том, что эти химические элементы содержатся в топливе в разном количестве.

Элементы, из которых состоит топливо, делятся на две группы.

1 группа: это те элементы, которые горят сами или поддерживают горение. К подобным элементам топлива относятся углерод, водород и кислород.

2 группа: это те элементы, которые сами не горят и не способствуют горению но они входят в состав топлива; к ним относятся азот и вода.

Особое место от названных элементов занимает сера. Сера является горючим веществом и при горении выделяет определённое количества тепла, но ее присутствие в топливе нежелательно, так как при горении серы выделяется сернистый газ, который переходит в нагреваемый металл и ухудшает его механические свойства.

Количество тепловой энергии, которое выделяет топливо при горении, измеряется калориями. Каждое топливо при горении выделяет неодинаковое количество тепла. Количество тепла (калорий), которое выделяется при полном сгорании 1 кг твердого или жидкого топлива или при сгорании 1 м3 газообразного топлива, называется как теплотворная способность топлива или теплота сгорания топлива. Теплота сгорания различных видов топлива имеет широкие пределы. Например, для мазута теплота сгорания составляет около 10000 ккал/кг, для угля 3000 - 7000 ккал/кг. Чем выше теплота сгорания топлива, тем топливо ценнее, так как для получения одного и того же количества тепла его потребуется меньше. Для сравнения тепловой ценности топлива или для производства расчётов расхода количества того или иного топлива применяется общая единица измерения или эталон топлива. В качестве такой единицы принято топливо Московского угля, имеющее теплотворную способность 7000 ккал/кг. Эта единица называется условное топливо. Для производства расчётов и сравнения расходов топлива различной теплоты сгорания необходимо знать калорийность топлива. К примеру, при проектировании, когда необходимо сравнить расход угля с расходом мазута и целесообразность строительства угольной или мазутной котельной необходимо учесть поправочный коэффициент на калорийность топлива.

Огромное многообразие ресурсов планеты очевидно, но картина мира не особо меняется.

1.3 Проблемы развития энергетики

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.

Как известно, в основе производства тепловой и электрической энергии лежит, как было сказано выше, процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Добыча, обработка и потребление энергоресурсов, металлов, воды и воздуха растет с большими требованиями человечества, при этом их запасы стремительно сокращаются. Особенно остро стоит проблема не возобновляемых органических ресурсов планеты.

Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.

Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5%, ежегодно образуется до 400 млн. тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.

Таким образом, даже сокращение потребления и экономичность полезных ископаемых не сможет помочь избежать энергетической катастрофы. Если в ближайшем будущем планета не станет непригодна для жизни, то критическая нужда в энергоресурсах обеспечена.

Выход остается в поиске и внедрении нескончаемых или возобновляемых источников энергии. Огромную важность играет борьба с отходами и выбросами в атмосферу тонн вредных и смертельно опасных в больших количествах веществ и тяжелых металлов.

Как уже известно, сгорание органического топлива вредно для окружающей среды. В настоящее время разрабатываются системы и устройства очистки выбросов в атмосферу продуктов сгорания. Среди устройств можно выделить следующие:

Фильтры на соплах Вентури;

Металлические лабиринтные фильтры;

Волокнистые синтетические объемные фильтры из нетканых материалов.

Из существующих методов очистки существуют следующие:

Адсорбционный метод.

Метод термического дожигания.

Термокаталитический метод.

Естественно такие средства стоят дорого. Кроме того, обслуживание систем требует наличия высококвалифицированного персонала.

2. АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Альтернативные источники энергии (АИЭ) в настоящее время являются наиболее существенным решением по отношению к производству электроэнергии из органического топлива. Альтернативная энергетика основана на преобразовании изначально экологически чистых компонентов, что в свою очередь, резко снижает вред производства энергии. К ним относится энергия:

Приливов и отливов;

Морских волн;

Внутреннее тепло планеты и др.

Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т. ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

Несмотря на это переход на АИЭ происходит плавно. Многие источники энергии устанавливают на определенной территории, и их эффективность зависит от благоприятных условий, времени и данных. Новинка всегда стоит гораздно дороже, чем укоренившийся продукт. Поэтому установка и эксплуатация стоит немалых затрат. Однако во всем мире уже довольно часто можно встретить ветряки или солнечные панели на крыше жилого здания, то есть АИЭ достигли массового применения, а это значит, что строительство в скором времени значительно снизит тарифы. Не стоит забывать про мегакорпорации и небольшие компании, которые существуют за счет добычи полезных ископаемых: нефти, газа, угля, и вряд ли они прекратят их добычу в силу спасения экологии планеты. Поэтому для успокоения общественности на “грязное” производство закупают различного рода очистные и фильтрующие системы. Но это лишь по большей мере единицы компаний и статьи в газетах и интернете.

2.1 Развитие альтернативных источников энергии

Основное достоинство АИЭ - это производство безвредной энергии. Значит, переход на АИЭ может изменить энергетическую и экологическую обстановку в мире. Энергия, получаемая с помощью АИЭ бесплатна.

Наиболее явными из недостатков медленного внедрения данной категории производства энергии являются: недостаточное финансирование и перебои в работе. Это связано с тем, что до сих пор их внедрение и производство является весьма дорогостоящим процессом. Новизна и недостаточная осведомленность для многих организаций также значительна. Многие производители предпочитают вредные и опасные для здоровья и окружающей среды электростанции в силу их надежности и готовности к полноценной работе, чем дорогостоящие и “капризные” системы производства энергии на возобновляемых источниках.

Перебои энергии являются существенным недостатком. Например, производство солнечной энергии возможно лишь в дневное время суток. Поэтому чаще всего вместе с альтернативными источниками энергии устанавливаются все те же вредные производства для компенсации энергоресурсов. При этом лишняя приобретенная энергия накапливается в аккумуляторных батареях.

АИЭ находятся на стадии значительного развития и внедрения. Многие страны уже перешли на них и добывают энергию в огромных количествах. Многие государства благодаря своему территориальному расположению активно используют АИЭ.

Суммарная установленная мощность ветрогенераторов в Китае на 2014 год составила 114763 МВт. Что же заставило правительство так активно развивать ветроэнергетику? Китай является лидером по выбросам в атмосферу СО2Планируется использовать в первую очередь геотермальную, ветряную, солнечную энергию. Согласно государственному плану, к 2020 г. в 7 районах страны будут построены огромные ветряные ЭС с общей выработкой в 120 гигаватт.

В США активно развивают альтернативную энергетику. Например, суммарная мощность американских ветрогенераторов США в 2014 г. составила 65879 МВт. США является мировым лидером по развитию геотермальной энергетики - направлению, использующему для получения энергии разницу температур между ядром Земли и ее корой. Один из методов использования горячих геотермальных ресурсов - УГС (усовершенствованные геотермальные системы), в которые вкладывает средства Министерство энергетики США. Их поддерживают также научные центры и венчурные компании (в частности, Google), но пока УГС остаются коммерчески неконкурентоспособными.

Можно также выделить такие страны по огромную влиянию АИЭ, как Германия, Япония, Индия и другие.

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

Одной из первой компанией по использованию энергии из грозовых облаков стала американская компания Alternative Energy Holdings. Она предложила способ использования даровой энергии путем ее сбора и утилизации, возникающей из электрических разрядов грозовых облаков. Экспериментальная установка была запущена в 2007 году и называлась “сборщик молний”. Разработки и исследования грозовых явлений содержат огромные скопления энергии, которые американская компания предложила использовать в качестве источника электроэнергии.

3.1 Грозовая электростанция

Грозовая электростанция, по сути, представляет собой классическую электростанцию, которая преобразует энергию молний в электричество. На данный момент грозовая энергетика активно исследуется, и возможно в ближайшем будущем появятся в больших количествах грозовые электростанции наряду с другими электростанции на базе чистой энергии.

3.1.1 Молния как источник грозовых перенапряжений

Грозовые молнии представляют собой электрические разряды, накапливающиеся в больших количествах в облаках. За счет потоков воздуха в грозовых облаках происходит накопление и разделение положительных и отрицательных зарядов, хотя вопросы по данной теме до сих пор исследуются.

Одно из распространенных предположений образования электрических зарядов в облаках связано с тем, что данный физический процесс происходит в постоянном электрическом поле земли, которое обнаружил еще М. В. Ломоносов во время проведения опытов.

Рис. 3.1. Наглядная схема развития грозы

Наша планета всегда имеет отрицательный заряд, при этом напряженность электрического поля вблизи поверхности земли составляет около100 В/м. Она обусловлена зарядами земли и мало зависит от времени года и суток и почти одинакова для любой точки земной поверхности. Воздух, окружающий Землю, имеет свободные заряды, которые движутся по направлению электрического поля Земли. Каждый кубический сантиметр воздуха вблизи земной поверхности содержит около 600 пар положительно и отрицательно заряженных частиц. С удалением от земной поверхности плотность заряженных частиц в воздухе растет. У земли проводимость воздуха мала, но на расстоянии 80 км от земной поверхности она увеличивается в 3 млрд. раз и достигает проводимости пресной воды.

Таким образом, Землю с окружающей атмосферой по электрическим свойствам можно представить как шаровой конденсатор колоссальных размеров, обкладками которого являются Земля и проводящий слой воздуха, находящийся на расстоянии 80 км от поверхности Земли. Изолирующей прослойкой между этими обкладками служит мало-проводящий электричество слой воздуха толщиной 80 км. Между обкладками такого конденсатора напряжение составляет около 200 кВ, а ток, проходящий под воздействием этого напряжения, равняется 1,4 кА. Мощность конденсатора составляет около 300 МВт. В электрическом поле этого конденсатора в интервале от 1 до 8 км от поверхности Земли образуются грозовые облака и совершаются грозовые явления.

Молния, как носитель электрических зарядов, является наиболее близким к электричеству источником, по сравнению с другими АИЭ. Заряд, который накапливается в облаках, имеет потенциал в несколько миллионов вольт относительно поверхности Земли. Направление тока молнии может быть как от земли к облаку, при отрицательном заряде тучи (в 90% случаев), так и от облака к земле (в 10% случаев). Длительность разряда молнии составляет в среднем 0,2 с, редко до 1…1,5 с, длительность переднего фронта импульса - от 3 до 20 мкс, ток составляет несколько тысяч ампер, до 100 кА, температура в канале достигает 20000 ?С, появляется мощное магнитное поле и радиоволны. Молнии могут образовываться также при пылевых бурях, метелях, извержениях вулканов.

альтернативный энергия грозовой электростанция

3.1.2 Принцип действия грозовой электростанции

Основан на все том же процессе, что и другие электростанции: преобразование энергии источника в электричество. По сути, молния содержит то же электричество, то есть ничего преобразовывать не надо. Однако указанные выше параметры “стандартного” грозового разряда настолько велики, что если это электричество попадет в сеть, то все оборудование просто сгорит в считанные секунды. Поэтому в систему вводят мощные конденсаторы, трансформаторы и различного рода преобразователи, подстраивающие данную энергию под требуемые условия применения в электросетях и оборудовании.

3.1.3 Преимущества и недостатки грозовой электростанции

Преимущества грозовых электростанций:

Земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии -- солнца и радиоактивных элементов земной коры.

Грозовая электростанция не выбрасывает в окружающую среду никаких загрязнителей.

Оборудование грозовых станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом. Для этого понадобится телескоп или бинокль.

Грозовая электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки грозовых электростанций:

Грозовое электричество, как и энергию солнца или ветра, трудно запасать.

Высокое напряжение в системах грозовых электростанций может быть опасным для обслуживающего персонала.

Общее количество электроэнергии, которую можно получать из атмосферы, ограниченно.

В лучшем случае грозовая энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Таким образом, грозовая энергетика в настоящее время достаточно ненадежна и уязвима. Однако это не уменьшает ее значимости в пользу перехода на АИЭ. Некоторые районы планеты насыщены благоприятными условиями, что может значительно продолжить изучение грозовых явлений и получение из них необходимого электричества.

3.2 Расчет грозовой электростанции

Расчет грозовой электростанции рассчитан, в первую очередь, на определение выходной мощности. Ведь задача любой электростанции заключается в максимальной энергетической эффективности, чтобы окупить средства на эксплуатацию и установку, а также производство электроэнергии. Чем выше количество выходной энергии, тем больший доход она принесет, и большее количество объектов будет ею обслужено. Так как основой входящей энергии грозовой электростанции является грозовой разряд, то, благодаря схожести его состава с выходной электроэнергией, расчет мощности электростанции практически эквивалентен мощности заряда молнии за исключением внутренних потерь.

На выходную мощность электростанции влияют такие параметры, как место установки, эффективность оборудования

Форма импульсов тока молнии i(t) описывается выражением:

где I - максимум тока; k - корректирующий коэффициент; t - время; - постоянная времени фронта; - постоянная времени спада.

Параметры, входящие в эту формулу, приведены в табл. 3.1. Они соответствуют наиболее сильным молниевым разрядам, которые встречаются редко (менее чем 5% случаев). Токи величиной 200 кА встречаются в 0,7...1% случаев, 20 кА - в 50% случаев.

Таблица 3.1. Параметры формулы (3.1).

Параметр

Для первого случая результат формы импульса будет таковым:

Таким образом, форма молнии представляет собой следующий вид:

Рис. 3.2. График формы импульса тока

При всем при этом максимальная разница потенциалов молнии достигает 50 миллионов вольт, при токе до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 25 миллионов вольт и ток 10 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Теперь мы имеем следующую мощность электрического разряда:

где P - мощность грозового разряда, U - напряжение; I - сила тока.

То есть по (3.2) получаем:

Значит, мощность грозового разряда составляет 125 миллионов киловатт. С учетом времени в несколько тысячных секунды определи общее количество энергии молнии:

Вт·ч=34,722 кВт·ч,

где t1 - количество секунд в часе; t2 - время длительности грозового разряда.

Возьмем среднюю цену электрической энергии 4 рубля за 1 кВт·ч. Тогда стоимость всей энергии молнии составит 138,88 рублей.

Реально получить и использовать энергию по данным расчетам, например, на нагрев воды, можно только небольшую часть. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

В процессе работы над курсовым проектом сделаны выводы об истощении ресурсов планеты и загрязнении атмосферы и поверхности земли в процессе их переработки и добычи. Кроме того, рассмотрены основные виды замены вредного производства на более щадящее путем выработки энергии из чистых природных источников таких, как вода, приливы, Солнце и др.

В курсовом проекте рассматривается возможность использования энергии грозовых разрядов для преобразования их в электроэнергию. Выполнены расчеты по количеству и стоимости грозового разряда. Однако данные расчеты относительны. Ведь энергия молнии расходуется на атмосферные процессы, и лишь ее небольшая часть добирается до электростанции.

Размещено на Allbest.ru

Подобные документы

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Характеристика невозобновляемых источников энергии и проблемы их использования. Переход от традиционных источников энергии к альтернативным. Нефть и газ и их роль в экономике любого государства. Химическая переработка нефти. Добыча нефти в Украине.

    реферат , добавлен 27.11.2011

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Ветроэнергетика, солнечная энергетика и гелиоэнергетика как альтернативные источники энергии. Нефть, уголь и газ как основные источники энергии. Жизненный цикл биотоплива, его влияние на состояние природной среды. Альтернативная история острова Самсо.

    презентация , добавлен 15.09.2013

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат , добавлен 29.03.2011

    География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация , добавлен 28.11.2012

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа , добавлен 30.07.2012

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Генерация электроэнергии из энергии ветра, история ее использования. Ветровые электростанции и их основные типы. Промышленное и частное использование ветровых электростанции, их преимущества и недостатки. Использование ветровых генераторов в Украине.

Буранов Разиф Расимович
Студент УГАТУ,
Россия, Республика. Башкортостан. г. Уфа

Научный руководитель:
Терегулов Т.Р. Уфимский Государственный Авиационный
Технический Университет
филиал в г. Туймазы
E-mail: [email protected]

В статье будут описаны основные параметры молнии, перспективы развития грозовой энергетики, интересные факты, проблемы в этой сфере.

КЛЮЧЕВЫЕ СЛОВА: МОЛНИЯ, ГРОЗОВАЯ ЭНЕРГЕТИКА, ГРОЗА, ЭНЕРГИЯ, РАЗРЯД, ЭЛЕКТРИЧЕСТВО.

Грозовая энергетика - это способ получения энергии путём поимки и перенаправления энергии молний в электросеть. Данный вид энергетики использует возобновляемый источник энергии и относится к альтернативным источникам энергии. Молния - гигантский электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Сила тока в разряде молнии на Земле достигает 10-500 тысяч ампер, напряжение - от десятков миллионов до миллиарда вольт. Мощность разряда - от 1 до 1000 ГВт. Количество электричества, расходуемого молнией при разряде - от 10 до 50 кулон. 11 октября 2006 года компания Alternative Energy Holdings объявила об успешном развитии прототипа модели, которая может продемонстрировать возможности «захвата» молнии для дальнейшего её превращения в электроэнергию. Такой вид энергии не приносит не какого вреда окружающей среде. Удешевит цену на электроэнергию. Такая установка окупаться такая установка будет за 4–7 лет. В разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород.

В 2006 году специалисты, работающие со спутником NASA «Миссия измерения тропических штормов», опубликовали данные по количеству гроз в разных регионах планеты. По данным исследования стало известно, что существуют районы, где в течение года происходит до 70 ударов молний в год на квадратный километр площади. Из этого следует что Грозовая энергетика имеет свое будущие. По некоторым данным, при одной мощной грозе высвобождается столько же энергии, сколько все жители США потребляют за 20 минут

Проблем тут масса. Нужно предугадать где случиться гроза.

Разряд молнии длится доли секунд. За это время нужно успеть запасти его энергию. Для этого нужны мощные и дорогостоящие конденсаторы. Также могут применяться различные колебательные системы с контурами второго и третьего рода, где можно согласовывать нагрузку с внутренним сопротивлением генератора. Молния является сложным электрическим процессом и делится на несколько разновидностей: отрицательные - накапливающиеся в нижней части облака и положительные - собирающиеся в верхней части облака. Это тоже надо учитывать при создании молниевой фермы.

Итак подведем итоги.

Из плюсов можно сказать, что грозовая энергетика более дешёвой и экологический чистый вид энергии.

Во-первых, есть районы где молнии бьют часто и ловить их будет легче.

Во-вторых Они будут окупаться за 4-7 лет.Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Рекомендуем почитать

Наверх